Unbiased estimation formula of unit weight standard deviation in regularization solution
نویسندگان
چکیده
منابع مشابه
Univariate and default standard unit biases in estimation of body weight and caloric content.
College students estimated the weight of adult women from either photographs or a live presentation by a set of models and estimated the calories in 1 of 2 actual meals. The 2 meals had the same items, but 1 had larger portion sizes than the other. The results suggest: (a) Judgments are biased toward transforming the example in question to the size and/or properties of a "standard" unit. For es...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
An unbiased implementation of regularization mechanisms
Perceptual processes, in computer or biological vision, require the computation of “maps” of quantitative values. The image itself is a “retinotopic map”: for each pixel of the image there is a value corresponding to the image intensity at this location. This is a vectorial value for color images. A step further, in early-vision, the retinal image contrast is computed at each location, allowing...
متن کاملUnbiased estimation of risk
The estimation of risk measured in terms of a risk measure is typically done in two steps: in the first step, the distribution is estimated by statistical methods, either parametric or nonparametric. In the second step, the estimated distribution is considered as true distribution and the targeted risk-measure is computed. In the parametric case this is achieved by using the formula for the ris...
متن کاملNoisin: Unbiased Regularization for Recurrent Neural Networks
Recurrent neural networks (rnns) are powerful models of sequential data. They have been successfully used in domains such as text and speech. However, rnns are susceptible to overfitting; regularization is important. In this paper we develop Noisin, a new method for regularizing rnns. Noisin injects random noise into the hidden states of the rnn and then maximizes the corresponding marginal lik...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geo-spatial Information Science
سال: 2004
ISSN: 1009-5020,1993-5153
DOI: 10.1007/bf02826293